Skip to content
Journal article

Generalized eta and omega squared statistics: measures of effect size for some common research designs.

Olejnik S, Algina J ...see all

Psychological methods, vol. 8, issue 4 (2003) pp. 434-447

  • 522


    Mendeley users who have this article in their library.
  • 427


    Citations of this article.
  • N/A


    ScienceDirect users who have downloaded this article.
Sign in to save reference


The editorial policies of several prominent educational and psychological journals require that researchers report some measure of effect size along with tests for statistical significance. In analysis of variance contexts, this requirement might be met by using eta squared or omega squared statistics. Current procedures for computing these measures of effect often do not consider the effect that design features of the study have on the size of these statistics. Because research-design features can have a large effect on the estimated proportion of explained variance, the use of partial eta or omega squared can be misleading. The present article provides formulas for computing generalized eta and omega squared statistics, which provide estimates of effect size that are comparable across a variety of research designs.

Find this document

Get full text


  • Stephen Olejnik

  • James Algina

Cite this document

Choose a citation style from the tabs below