- Breiman L

Annals of Statistics (1996) 24(6) 2350-2383

- 144Mendeley users who have this article in their library.
- 530Citations of this article.

In model selection, usually a "best" predictor is chosen from a collection μ^(⋅,s){\hat{\mu}(\cdot, s)} of predictors where μ^(⋅,s)\hat{\mu}(\cdot, s) is the minimum least-squares predictor in a collection Us\mathsf{U}_s of predictors. Here s is a complexity parameter; that is, the smaller s, the lower dimensional/smoother the models in Us\mathsf{U}_s. If L\mathsf{L} is the data used to derive the sequence μ^(⋅,s){\hat{\mu}(\cdot, s)}, the procedure is called unstable if a small change in L\mathsf{L} can cause large changes in μ^(⋅,s){\hat{\mu}(\cdot, s)}. With a crystal ball, one could pick the predictor in μ^(⋅,s){\hat{\mu}(\cdot, s)} having minimum prediction error. Without prescience, one uses test sets, cross-validation and so forth. The difference in prediction error between the crystal ball selection and the statistician's choice we call predictive loss. For an unstable procedure the predictive loss is large. This is shown by some analytics in a simple case and by simulation results in a more complex comparison of four different linear regression methods. Unstable procedures can be stabilized by perturbing the data, getting a new predictor sequence μ′^(⋅,s){\hat{\mu'}(\cdot, s)} and then averaging over many such predictor sequences.

- Cross-validation
- Prediction error
- Predictive loss
- Regression
- Subset selection

Mendeley saves you time finding and organizing research

Sign up here

Already have an account ?Sign in

Choose a citation style from the tabs below