Human microvasculature fabrication using thermal inkjet printing technology

  • Cui X
  • Boland T
  • 334

    Readers

    Mendeley users who have this article in their library.
  • 263

    Citations

    Citations of this article.

Abstract

The current tissue engineering paradigm is that successfully engineered thick tissues must include vasculature. As biological approaches alone, such as VEGF, have fallen short of their promises, one may look for an engineering approach to build microvasculature. Layer-by-layer approaches for customized fabrication of cell/scaffold constructs have shown some potential in building complex 3D structures. With the advent of cell printing, one may be able to build precise human microvasculature with suitable bio-ink. Human microvascular endothelial cells (HMVEC) and fibrin were studied as bio-ink for microvasculature construction. Endothelial cells are the only cells to compose the human capillaries and also form the entire inner lining of cardiovascular system. Fibrin has been already widely recognized as tissue engineering scaffold for vasculature and other cells, including skeleton/smooth muscle cells and chondrocytes. In our study, we precisely fabricated micron-sized fibrin channels using a drop-on-demand polymerization. This printing technique uses aqueous processes that have been shown to induce little, if any, damage to cells. When printing HMVEC cells in conjunction with the fibrin, we found the cells aligned themselves inside the channels and proliferated to form confluent linings. The 3D tubular structure was also found in the printed patterns. We conclude that a combined simultaneous cell and scaffold printing can promote HMVEC proliferation and microvasculature formation. ?? 2009 Elsevier Ltd. All rights reserved.

Author-supplied keywords

  • Fibrin
  • Human microvascular endothelial cell
  • Inkjet printing
  • Microvasculature

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Xiaofeng Cui

  • Thomas Boland

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free