Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana

  • Takahashi N
  • Goto N
  • Okada K
 et al. 
  • 53

    Readers

    Mendeley users who have this article in their library.
  • 73

    Citations

    Citations of this article.

Abstract

We have developed experimental systems to study hydrotropism in seedling roots of Arabidopsis thaliana (L.) Heynh. Arabidopsis roots showed a strong curvature in response to a moisture gradient, established by applying 1% agar and a saturated solution of KCl or K(2)CO(3) in a closed chamber. In this system, the hydrotropic response overcame the gravitropic response. Hydrotropic curvature commenced within 30 min and reached 80-100 degrees within 24 h of hydrostimulation. When 1% agar and agar containing 1 MPa sorbitol were placed side-by-side in humid air, a water potential gradient formed at the border between the two media. Although the gradient changed with time, it still elicited a hydrotropic response in Arabidopsis roots. The roots curved away from 0.5-1.5 MPa of sorbitol agar. Various Arabidopsis mutants were tested for their hydrotropic response. Roots of aba1-1 and abi2-1 mutants were less sensitive to hydrotropic stimulation. Addition of abscisic acid restored the normal hydrotropic response in aba1-1 roots. In comparison, mutants that exhibit a reduced response to gravity and auxin, axr1-3 and axr2-1, showed a hydrotropic response greater than that of the wild type. Wavy mutants, wav2-1 and wav3-1, showed increased sensitivity to the induction of hydrotropism by the moisture gradient. These results suggest that auxin plays divergent roles in hydrotropism and gravitropism, and that abscisic acid plays a positive role in hydrotropism. Furthermore, hydrotropism and the wavy response may share part of a common molecular pathway controlling the directional growth of roots.

Author-supplied keywords

  • Abscisic acid
  • Arabidopsis (root)
  • Auxin
  • Gravitropism
  • Hydrotropism
  • Wavy mutant

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Nobuyuki Takahashi

  • Nobuharu Goto

  • Kiyotaka Okada

  • Hideyuki Takahashi

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free