Identification of a peptidergic pathway critical to satiety responses in drosophila

48Citations
Citations of this article
125Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Although several neural pathways have been implicated in feeding behaviors in mammals [1-7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage. Likewise, the loss-of-function mutation of mip also increased feeding and BW. Suppressing the MIP pathway induced satiated flies to behave like starved ones, with elevated sensitivity toward food. Conversely, activating MIP neurons greatly decreased food intake and BW and markedly blunted the sensitivity of starved flies toward food. Upon terminating the activation protocol of MIP neurons, the decreased BW reverts rapidly to the normal level through a strong feeding rebound, indicating the switch-like role of MIP pathway in feeding. Surprisingly, the MIP-mediated BW decrease occurred independently of sex peptide receptor (SPR), the only known receptor for MIP, suggesting the presence of a yet-unknown MIP receptor. Together, our results reveal a novel anorexigenic pathway that controls satiety in Drosophila and provide a new avenue to study how the brain actively maintains a constant BW.

Cite

CITATION STYLE

APA

Min, S., Chae, H. S., Jang, Y. H., Choi, S., Lee, S., Jeong, Y. T., … Chung, J. (2016). Identification of a peptidergic pathway critical to satiety responses in drosophila. Current Biology, 26(6), 814–820. https://doi.org/10.1016/j.cub.2016.01.029

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free