Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets

30Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

Abstract

Here we present a study of the 11 yr sunspot cycle's imprint on the Northern Hemisphere atmospheric circulation, using three recently developed gridded upper-air data sets that extend back to the early twentieth century. We find a robust response of the tropospheric late-wintertime circulation to the sunspot cycle, independent from the data set. This response is particularly significant over Europe, although results show that it is not directly related to a North Atlantic Oscillation (NAO) modulation; instead, it reveals a significant connection to the more meridional Eurasian pattern (EU). The magnitude of mean seasonal temperature changes over the European land areas locally exceeds 1 K in the lower troposphere over a sunspot cycle. We also analyse surface data to address the question whether the solar signal over Europe is temporally stable for a longer 250 yr period. The results increase our confidence in the existence of an influence of the 11 yr cycle on the European climate, but the signal is much weaker in the first half of the period compared to the second half. The last solar minimum (2005 to 2010), which was not included in our analysis, shows anomalies that are consistent with our statistical results for earlier solar minima. © Author(s) 2013.

Cite

CITATION STYLE

APA

Brugnara, Y., Brönnimann, S., Luterbacher, J., & Rozanov, E. (2013). Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets. Atmospheric Chemistry and Physics, 13(13), 6275–6288. https://doi.org/10.5194/acp-13-6275-2013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free