Influences of geometric configurations of bypass grafts on hemodynamics in end-to-side anastomosis

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Background: Although considerable efforts have been made to improve the graft patency in coronary artery bypass surgery, the role of biomechanical factors remains underrecognized. The aim of this study is to investigate the influences of geometric configurations of the bypass graft on hemodynamic characteristics in relation to anastomosis. Materials and Methods: The Numerical analysis focuses on understanding the flow patterns for different values of inlet and distal diameters and graft angles. The Blood flow field is treated as a two-dimensional incompressible laminar flow. A finite volume method is adopted for discretization of the governing equations. The Carreau model is employed as a constitutive equation for blood. In an attempt to obtain the optimal aorto-coronary bypass conditions, the blood flow characteristics are analyzed using in vitro models of the end-to-side anastomotic angles of 45°, 60° and 90°. To find the optimal graft configurations, the mass flow rates at the outlets of the four models are compared quantitatively. Results: This study finds that Model 3, whose bypass diameter is the same as the inlet diameter of the stenosed coronary artery, delivers the largest amount of blood and the least pressure drop along the arteries. Conclusion: Biomechanical factors are speculated to contribute to the graft patency in coronary artery bypass grafting. © The Korean Society for Thoracic and Cardiovascular Surgery. 2011.

Cite

CITATION STYLE

APA

Choi, J. S., Hong, S. C., Kwon, H. M., Suh, S. H., & Lee, J. S. (2011). Influences of geometric configurations of bypass grafts on hemodynamics in end-to-side anastomosis. Korean Journal of Thoracic and Cardiovascular Surgery, 44(2), 89–98. https://doi.org/10.5090/kjtcs.2011.44.2.89

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free