Innovation of Hydrocarbon Oxidation with Molecular Oxygen and Related Reactions

627Citations
Citations of this article
125Readers
Mendeley users who have this article in their library.
Get full text

Abstract

An innovation of the aerobic oxidation of hydrocarbons through catalytic carbon radical generation under mild conditions was achieved by using N-hydroxyphthalimide (NHPI) as a key compound. Alkanes were successfully oxidized with O2 or air to valuable oxygen-containing compounds such as alcohols, ketones, and dicarboxylic acids by the combined catalytic system of NHPI and a transition metal such as Co or Mn. The NHPI-catalyzed oxidation of alkylbenzenes with dioxygen could be performed even under normal temperature and pressure of dioxygen. Xylenes and methylpyridines were also converted into phthalic acids and pyridinecarboxylic acids, respectively, in good yields. The present oxidation method was extended to the selective transformations of alcohols to carbonyl compounds and of alkynes to ynones. The epoxidation of alkenes using hydroperoxides or H2O2 generated in situ from hydrocarbons or alcohols and O2 under the influence of the NHPI was demonstrated and seems to be a useful strategy for industrial applications. The NHPI method is applicable to a wide variety of organic syntheses via carbon radical intermediates. The catalytic carboxylation of alkanes was accomplished by the use of CO and O2 in the presence of NHPI. In addition, the reactions of alkanes with NO2 and SO2 catalyzed by NHPI provided efficient methods for the synthesis of nitroalkanes and sulfonic acids, respectively. A catalytic carbon-carbon bond forming reaction was achieved by allowing carbon radicals generated in situ from alkanes or alcohols to react with alkenes under mild conditions.

Cite

CITATION STYLE

APA

Ishii, Y., Sakaguchi, S., & Iwahama, T. (2001). Innovation of Hydrocarbon Oxidation with Molecular Oxygen and Related Reactions. Advanced Synthesis and Catalysis. Wiley-VCH Verlag. https://doi.org/10.1002/1615-4169(200107)343:5<393::AID-ADSC393>3.0.CO;2-K

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free