An introduction to exponential random graph (p*) models for social networks

N/ACitations
Citations of this article
1.6kReaders
Mendeley users who have this article in their library.
Get full text

Abstract

This article provides an introductory summary to the formulation and application of exponential random graph models for social networks. The possible ties among nodes of a network are regarded as random variables, and assumptions about dependencies among these random tie variables determine the general form of the exponential random graph model for the network. Examples of different dependence assumptions and their associated models are given, including Bernoulli, dyad-independent and Markov random graph models. The incorporation of actor attributes in social selection models is also reviewed. Newer, more complex dependence assumptions are briefly outlined. Estimation procedures are discussed, including new methods for Monte Carlo maximum likelihood estimation. We foreshadow the discussion taken up in other papers in this special edition: that the homogeneous Markov random graph models of Frank and Strauss [Frank, O., Strauss, D., 1986. Markov graphs. Journal of the American Statistical Association 81, 832-842] are not appropriate for many observed networks, whereas the new model specifications of Snijders et al. [Snijders, T.A.B., Pattison, P., Robins, G.L., Handock, M. New specifications for exponential random graph models. Sociological Methodology, in press] offer substantial improvement. © 2006 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential random graph (p*) models for social networks. Social Networks, 29(2), 173–191. https://doi.org/10.1016/j.socnet.2006.08.002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free