Involvement of surface potential in regulation of polar membrane lipids in Acholeplasma laidlawii

  • Christiansson A
  • Eriksson L
  • Westman J
 et al. 
  • 8

    Readers

    Mendeley users who have this article in their library.
  • 41

    Citations

    Citations of this article.

Abstract

Upon induced variation of membrane lipid acyl chain unsaturation in Acholeplasma laidlawii, the cells strongly change in a characteristic manner the proportions of individual (charged and noncharged) polar lipids synthesized. Monolayer analysis of polar lipid extracts revealed different mean lateral molecular areas but similar surface change densities. Microelectrophoresis of these lipids indicated an almost constant lipid membrane ζ-potential of about -35 mV. Simulation by the Gouy-Chapman-Stern (GCS) relations verified that the ζ (surface)-potentials remain constant. Exposing cells to increasing concentration of Na+ yielded a substantial increase in amounts of charged lipids synthesized. In model systems consisting of mixtures of A. laidlawii phosphatidylglycerol (anionic) and glucolipid (diglucosyldiglyceride, noncharged) microelectrophoresis showed: (i) increasing PG amounts resulted in an increased-, and (ii) increasing Na+ concentration resulted in a decreased ζ-potential, respectively, (iii) at physiological ionic strength and lipid surface charge densities the ζ-potential was approximately -35 mV, and (iv) simulation according to the GCS theory yielded an acceptable fit with experimental data. This behavior of the phosphatidylglycerol/diglucosyldiglyceride mixture is very similar to that of phosphatidylserine/phosphatidylcholine mixtures. It is concluded that the changes in lipid surface charge densities (and surface potential) in A. laidlawii membranes brought by variation in lateral areas of lipid acyl chains and the concentration-dependent quenching of lipid charge by Na+, is compensated for by the cellular regulation of charged lipid amounts thereby maintaining a constant lipid surface potential.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

  • PMID: 3980463
  • PUI: 15096462
  • SGR: 0021981921
  • SCOPUS: 2-s2.0-0021981921
  • ISSN: 00219258

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free