A lab-on-a-disc with reversible and thermally stable diaphragm valves

38Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A lab-on-a-disc is a unique microfluidic platform that utilizes centrifugal force to pump liquids. This offers many benefits for point-of-care devices because it eliminates the need for connections to multiple pumps and complex tubing connections. A wide range of applications including clinical chemistry, immunoassay, cell analysis, and nucleic acid tests could be demonstrated on a spinning disc. To enable the performance of assays in a fully integrated and automated manner, the robust actuation of integrated valves is a prerequisite. However, conventional passive-type valves incur a critical drawback in that their operation is dependent on the rotational frequency, which is easily influenced by the channel geometry and chemistry, in addition to the physical properties of the liquids to be transferred. Even though a few active-type valving techniques permit the individual actuation of valves, independent of the rotational frequency, complex procedures for the fabrication as well as actuation mechanisms have prevented their broader acceptance in general applications. Here, we report on a lab-on-a-disc incorporating individually addressable diaphragm valves (ID valves) that enable the reversible and thermally stable actuation of multiple valves with unprecedented ease and robustness. These ID valves are configured from an elastic epoxy diaphragm embedded on a 3D printed push-and-twist valve, which can be easily actuated by a simple automatic driver unit. As a proof of concept experiment, an enzyme-linked immunosorbent assay (ELISA) and a polymerase chain reaction (PCR) were performed on a disc in a fully automated manner to demonstrate the robust, reversible, leak-free, and thermally stable actuation of the valves.

Cite

CITATION STYLE

APA

Kim, T. H., Sunkara, V., Park, J., Kim, C. J., Woo, H. K., & Cho, Y. K. (2016). A lab-on-a-disc with reversible and thermally stable diaphragm valves. Lab on a Chip, 16(19), 3741–3749. https://doi.org/10.1039/c6lc00629a

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free