Large-area synthesis of WSe 2 from WO 3 by selenium–oxygen ion exchange

  • Paul B
  • Sarah E
  • Kehao Z
  • et al.
N/ACitations
Citations of this article
1Readers
Mendeley users who have this article in their library.

Abstract

Few-layer tungsten diselenide (WSe 2 ) is attractive as a next-generation electronic material as it exhibits modest carrier mobilities and energy band gap in the visible spectra, making it appealing for photovoltaic and low-powered electronic applications. Here we demonstrate the scalable synthesis of large-area, few-layer WSe 2 via replacement of oxygen in hexagonally stabilized tungsten oxide films using dimethyl selenium. Cross-sectional transmission electron microscopy reveals successful control of the final WSe 2 film thickness through control of initial tungsten oxide thickness, as well as development of layered films with grain sizes up to several hundred nanometers. Raman spectroscopy and atomic force microscopy confirms high crystal uniformity of the converted WSe 2 , and time domain thermo-reflectance provide evidence that near record low thermal conductivity is achievable in ultra-thin WSe 2 using this method.

Cite

CITATION STYLE

APA

Paul, B., Sarah, E., Kehao, Z., Lorraine, H., Yu-Chuan, L., Ke, W., … Joshua, A. R. (2015). Large-area synthesis of WSe 2 from WO 3 by selenium–oxygen ion exchange. 2D Materials, 2(1), 14003. Retrieved from http://stacks.iop.org/2053-1583/2/i=1/a=014003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free