Learning in presence of ontology mapping errors

  • Koul N
  • Honavar V
  • 8

    Readers

    Mendeley users who have this article in their library.
  • 1

    Citations

    Citations of this article.

Abstract

The widespread use of ontologies to associate semantics with data has resulted in a growing interest in the problem of learning predictive models from data sources that use different ontologies to model the same underlying domain (world of interest). Learning from such semantically disparate data sources involves the use of a mapping to resolve semantic disparity among the ontologies used. Often, in practice, the mapping used to resolve the disparity may contain errors and as such the learning algorithms used in such a setting must be robust in presence of mapping errors. We reduce the problem of learning from semantically disparate data sources in the presence of mapping errors to a variant of the problem of learning in the presence of nasty classification noise. This reduction allows us to transfer theoretical results and algorithms from the latter to the former.

Author-supplied keywords

  • Nasty classification noise
  • Ontology mapping errors
  • PAC
  • Semantically disparate data sources

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free