Local phase control for a planar array of fiber laser amplifiers

  • Steffanic P
  • Johannes B
  • Sison C
  • et al.
4Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

© 2015 SPIE. Arrays of phase-locked lasers have been developed for numerous directed-energy applications. Phased-Array designs are capable of producing higher beam intensity than similar sized multi-beam emitters, and also allow beam steering and beam profile manipulation. In phased-Array designs, individual emitter phases must be controllable, based on suitable feedback. Most current control schemes sample individual emitter phases, such as with an array-wide beam splitter, and compare to a master phase reference. Reliance on a global beam splitter limits scalability to larger array sizes due to lack of design modularity. This paper describes a conceptual design and control scheme that relies only on feedback from the array structure itself. A modular and scalable geometry is based on individual hexagonal frames for each emitter; each frame cell consists of a conventional lens mounted in front of the fiber tip. A rigid phase tap structure physically connects two adjacent emitter frame cells. A target sensor is mounted on top of the phase tap, representing the local alignment datum. Optical sensors measure the relative position of the phase tap and target sensor. The tap senses the exit phase of both emitters relative to the target normal plane, providing information to the phase controller for each emitter. As elements are added to the array, relative local position data between adjacent phase taps allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. The approach is scalable for target distance and number of emitters without loss of control.

Cite

CITATION STYLE

APA

Steffanic, P., Johannes, B. T., Sison, C. A., Hughes, G. B., Lubin, P., Meinhold, P., … Motta, C. (2015). Local phase control for a planar array of fiber laser amplifiers. In Nanophotonics and Macrophotonics for Space Environments IX (Vol. 9616, p. 961607). SPIE. https://doi.org/10.1117/12.2189821

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free