Long-term tillage systems impacts on soil C dynamics, soil resilience and agronomic productivity of a Brazilian Oxisol

  • De Moraes Sá J
  • Tivet F
  • Lal R
 et al. 
  • 138


    Mendeley users who have this article in their library.
  • 39


    Citations of this article.


No-till (NT) cropping systems have been widely promoted in many regions as an important tool to enhance soil quality and improve agronomic productivity. However, knowledge of their long-term effects on soil organic carbon (SOC) stocks and functional SOC fractions linking soil resilience capacity and crop yield is still limited. The aims of this study were to: (i) assess the long-term (16 years) effects of tillage systems (i.e., conventional - CT, minimum - MT, no-till with chisel - NTch, and continuous no-till cropping systems - CNT) on SOC in bulk soil and functional C fractions isolated by chemical (hot water extractable organic C - HWEOC, permanganate oxidizable C - POXC) and physical methods (light organic C - LOC, particulate organic C - POC, mineral-associated organic C - MAOC) of a subtropical Oxisol to 40cm depth; (ii) evaluate the soil resilience restoration effectiveness of tillage systems, and (iii) assess the relationship between the SOC stock enhancement and crop yield. The crop rotation comprised a 3-year cropping sequence involving two crops per year with soybean (Glycine max, L. Merril) and maize (Zea mays L.) in the summer alternating with winter crops. In 2005, the soil under CNT contained 25.8, 20.9, and 5.3Mgha-1more SOC (P

Author-supplied keywords

  • Biomass-C input
  • Labile and stable fractions
  • No-till cropping systems
  • Resilience
  • Temporal changes
  • Yield

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free