Method to detect only live bacteria during PCR amplification

87Citations
Citations of this article
155Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ethidium monoazide (EMA) is a DNA cross-linking agent and eukaryotic topoisomerase II poison. We previously reported that the treatment of EMA with visible light irradiation (EMA + Light) directly cleaved chromosomal DNA of Escherichia coli (T. Soejima, K. Iida, T. Qin, H. Taniai, M. Seki, A. Takade, and S. Yoshida, Microbiol. Immunol. 51:763-775, 2007). Herein, we report that EMA + Light randomly cleaved chromosomal DNA of heat-treated, but not live, Listeria monocytogenes cells within 10 min of treatment. When PCR amplified DNA that was 894 bp in size, PCR final products from 108 heat-treated L. monocytogenes were completely suppressed by EMA + Light. When target DNA was short (113 bp), like the hly gene of L. monocytogenes, DNA amplification was not completely suppressed by EMA + Light only. Thus, we used DNA gyrase/topoisomerase IV and mammalian topoisomerase poisons (here abbreviated as T-poisons) together with EMA + Light. T-poisons could penetrate heat-treated, but not live, L. monocytogenes cells within 30 min to cleave chromosomal DNA by poisoning activity. The PCR product of the hly gene from 108 heat-treated L. monocytogenes cells was inhibited by a combination of EMA + Light and T-poisons (EMA + Light + T-poisons), but those from live bacteria were not suppressed. As a model for clinical application to bacteremia, we tried to discriminate live and antibiotic-treated L. monocytogenes cells present in human blood. EMA + Light + T-poisons completely suppressed the PCR product from 103 to 107 antibiotic-treated L. monocytogenes cells but could detect 102 live bacteria. Considering the prevention and control of food poisoning, this method was applied to discriminate live and heat-treated L. monocytogenes cells spiked into pasteurized milk. EMA + Light + T-poisons inhibited the PCR product from 103 to 107 heat-treated cells but could detect 101 live L. monocytogenes cells. Our method is useful in clinical as well as food hygiene tests. Copyright © 2008, American Society for Microbiology. All Rights Reserved.

Cite

CITATION STYLE

APA

Soejima, T., Iida, K. I., Qin, T., Taniai, H., Seki, M., & Yoshida, S. I. (2008). Method to detect only live bacteria during PCR amplification. Journal of Clinical Microbiology, 46(7), 2305–2313. https://doi.org/10.1128/JCM.02171-07

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free