Method to detect only live bacteria during PCR amplification

  • Soejima T
  • Iida K
  • Qin T
 et al. 
  • 100


    Mendeley users who have this article in their library.
  • 56


    Citations of this article.


Ethidium monoazide (EMA) is a DNA cross-linking agent and eukaryotic topoisomerase II poison. We previously reported that the treatment of EMA with visible light irradiation (EMA + Light) directly cleaved chromosomal DNA of Escherichia coli (T. Soejima, K. Iida, T. Qin, H. Taniai, M. Seki, A. Takade, and S. Yoshida, Microbiol. Immunol. 51:763-775, 2007). Herein, we report that EMA + Light randomly cleaved chromosomal DNA of heat-treated, but not live, Listeria monocytogenes cells within 10 min of treatment. When PCR amplified DNA that was 894 bp in size, PCR final products from 10(8) heat-treated L. monocytogenes were completely suppressed by EMA + Light. When target DNA was short (113 bp), like the hly gene of L. monocytogenes, DNA amplification was not completely suppressed by EMA + Light only. Thus, we used DNA gyrase/topoisomerase IV and mammalian topoisomerase poisons (here abbreviated as T-poisons) together with EMA + Light. T-poisons could penetrate heat-treated, but not live, L. monocytogenes cells within 30 min to cleave chromosomal DNA by poisoning activity. The PCR product of the hly gene from 10(8) heat-treated L. monocytogenes cells was inhibited by a combination of EMA + Light and T-poisons (EMA + Light + T-poisons), but those from live bacteria were not suppressed. As a model for clinical application to bacteremia, we tried to discriminate live and antibiotic-treated L. monocytogenes cells present in human blood. EMA + Light + T-poisons completely suppressed the PCR product from 10(3) to 10(7) antibiotic-treated L. monocytogenes cells but could detect 10(2) live bacteria. Considering the prevention and control of food poisoning, this method was applied to discriminate live and heat-treated L. monocytogenes cells spiked into pasteurized milk. EMA + Light + T-poisons inhibited the PCR product from 10(3) to 10(7) heat-treated cells but could detect 10(1) live L. monocytogenes cells. Our method is useful in clinical as well as food hygiene tests.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Takashi Soejima

  • Ken Ichiro Iida

  • Tian Qin

  • Hiroaki Taniai

  • Masanori Seki

  • Shin Ichi Yoshida

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free