Methylation and acetylation of 15-hydroxyanandamide modulate its interaction with the endocannabinoid system

  • Amadio D
  • Fezza F
  • Catanzaro G
 et al. 
  • 12


    Mendeley users who have this article in their library.
  • 10


    Citations of this article.


The biological activity of endocannabinoids like anandamide (AEA) and 2-arachidonoylglycerol (2-AG) is subjected in vivo to a "metabolic control", exerted mainly by catabolic enzymes. AEA is inactivated by fatty acid amide hydrolase (FAAH), that is inhibited competitively by hydroxyanandamides (HAEAs) generated from AEA by lipoxygenase activity. Among these derivatives, 15-HAEA has been shown to be an effective (Ki∼0.6 μM) FAAH inhibitor, that blocks also type-1 cannabinoid receptor (CB1R) but not other components of the "endocannabinoid system (ECS)", like the AEA transporter (AMT) or CB2R. Here, we extended the study of the effect of 15-HAEA on the AEA synthetase (NAPE-PLD) and the AEA-binding vanilloid receptor (TRPV1), showing that 15-HAEA activates the former (up to ∼140% of controls) and inhibits the latter protein (down to ∼70%). We also show that 15-HAEA halves the synthesis of 2-AG and almost doubles the transport of this compound across the membrane. In addition, we synthesized methyl and acetyl derivatives of 15-HAEA (15-MeOAEA and 15-AcOAEA, respectively), in order to check their ability to modulate FAAH and the other ECS elements. In fact, methylation and acetylation are common biochemical reactions in the cellular environment. We show that 15-MeOAEA, unlike 15-AcOAEA, is still a powerful competitive inhibitor of FAAH (Ki∼0.7 μM), and that both derivatives have negligible interactions with the other proteins of ECS. Therefore, 15-MeOAEA is a FAAH inhibitor more selective than 15-HAEA. Further molecular dynamics analysis gave clues to the molecular requirements for the interaction of 15-HAEA and 15-MeOAEA with FAAH. © 2010 Elsevier Masson SAS. All rights reserved.

Author-supplied keywords

  • 2-Arachidonoylglycerol
  • Anandamide
  • Fatty acid amide hydrolase
  • Natural inhibitors

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free