The microscopic dynamics of freezing in supercooled colloidal fluids

  • Grier D
  • Murray C
  • 27

    Readers

    Mendeley users who have this article in their library.
  • 103

    Citations

    Citations of this article.

Abstract

Using time-resolved digital video microscopy, we have tracked the reemergence of order in charge-stabilized colloidal crystals which have been shear melted into isotropic fluids. Crystallization is heterogeneously nucleated by the smooth walls of the sample container. This process is analogous to the solidification of conventional materials during casting or liquid phase epitaxy. The nonequilibrium freezing transition proceeds through the gradual formation of a layered fluid near the repulsive wall, subsequent evolution of local order within the first fluid layer, and ultimately rapid crystallization. After nucleation and initial growth, crystallites are observed to fracture, perhaps due to shear stresses imposed by neighboring crystallites. Microscopic measurements of the nonequilibrium self-diffusion coefficient are consistent with the dynamical freezing criterion recently proposed for systems in equilibrium by Lowen et al. [Phys. Rev. Lett. 70, 1557 (1993)].

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free