Microvascular Permeability and Interstitial Penetration of Sterically Stabilized (Stealth) Liposomes in a Human Tumor Xenograft

  • Huang S
  • Papahadjopoulos D
  • Berk D
 et al. 
  • 121

    Readers

    Mendeley users who have this article in their library.
  • 727

    Citations

    Citations of this article.

Abstract

Microvascular permeability and interstitial penetration of sterically stabilized liposomes in both normal s.c. tissue and human colon adenocarcinoma LS174T xenograft were quantified by using the dorsal skin-fold chamber implanted in severe combined immunodeficient mice and intravital fluorescence microscopy. Significant extravascular accumulation was the dominant feature of liposome distribution in tumors, whereas only minimal intramural accumulation in postcapillary and collecting venules was observed in normal s.c. tissue. The extravasated liposomes in tumors distributed heterogeneously and formed perivascular clusters that did not move significantly and could be observed for up to 1 week. The effective permeability of tumor vessels to liposomes (2.0 +/- 1.6 x 10(-8) cm/s; n = 23) was six times smaller than that to bovine serum albumin (1.2 +/- 0.5 x 10(-7) cm/s; n = 6). These results provide new insights into the mechanisms of transendothelial pathways of liposomes and improvements in liposome-mediated drug delivery.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free