Multilevel framework to detect and handle vehicle occlusion

  • Zhang W
  • Wu Q
  • Yang X
 et al. 
  • 38

    Readers

    Mendeley users who have this article in their library.
  • 73

    Citations

    Citations of this article.

Abstract

This paper presents a multilevel framework to detect and handle vehicle occlusion. The proposed framework consists of the intraframe, interframe, and tracking levels. On the intraframe level, occlusion is detected by evaluating the compactness ratio and interior distance ratio of vehicles, and the detected occlusion is handled by removing a ldquocutting regionrdquo of the occluded vehicles. On the interframe level, occlusion is detected by performing subtractive clustering on the motion vectors of vehicles, and the occluded vehicles are separated according to the binary classification of motion vectors. On the tracking level, occlusion layer images are adaptively constructed and maintained, and the detected vehicles are tracked in both the captured images and the occlusion layer images by performing a bidirectional occlusion reasoning algorithm. The proposed intraframe, interframe, and tracking levels are sequentially implemented in our framework. Experiments on various typical scenes exhibit the effectiveness of the proposed framework. Quantitative evaluation and comparison demonstrate that the proposed method outperforms state-of-the-art methods.

Author-supplied keywords

  • Convex hull, intelligent transportation system (ITS)
  • Occlusion
  • Occlusion layer image
  • Subtractive clustering

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free