Many multipotential gene-marked progenitor or stem cell clones contribute to hematopoiesis in nonhuman primates.

  • Kim H
  • Tisdale J
  • Wu T
 et al. 
  • 21


    Mendeley users who have this article in their library.
  • 89


    Citations of this article.


Retroviral insertion site analysis was used to track the contribution of retrovirally transduced primitive progenitors to hematopoiesis after autologous transplantation in the rhesus macaque model. CD34-enriched mobilized peripheral blood cells were transduced with retroviral marking vectors containing the neo gene and were reinfused after total body irradiation. High-level gene transfer efficiency allowed insertion site analysis of individual myeloid and erythroid colony-forming units (CFU) and of highly purified B- and T-lymphoid populations in 2 animals. At multiple time points up to 1 year after transplantation, retroviral insertion sites were identified by performing inverse polymerase chain reaction and sequencing vector-containing CFU or more than 99% pure T- and B-cell populations. Forty-eight unique insertion sequences were detected in the first animal and also in the second animal, and multiple clones contributed to hematopoiesis at 2 or more time points. Multipotential clones contributing to myeloid and lymphoid lineages were identified. These results support the concept that hematopoiesis in large animals is polyclonal and that individual multipotential stem or progenitor cells can contribute to hematopoiesis for prolonged periods. Gene transfer to long-lived, multipotent clones is shown and is encouraging for human gene therapy applications.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • H J Kim

  • J F Tisdale

  • T Wu

  • M Takatoku

  • S E Sellers

  • P Zickler

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free