A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots

170Citations
Citations of this article
215Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A combination of transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopies performed on solution-phase samples of colloidal CdSe quantum dots (QDs) allows the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of the QD. Data from TA and TRPL yield the same six exponential components, with time constants ranging from ∼1 ps to 50 ns, for excitonic decay. Comparison of TA signals in the visible and near-infrared (NIR) spectral regions enables determination of the relative contributions of electron and hole dynamics to each decay component, and comparison of TA and TRPL reveals that each component represents a competition between radiative and nonradiative decay pathways. In total, these data suggest that the QD sample comprises at least three distinct populations that differ in both the radiative and nonradiative decay pathways available to the excitonic charge carriers, and provide evidence for multiple emissive excitonic states in which the hole is not in the valence band, but rather a relaxed or trapped state. © 2011 American Chemical Society.

Cite

CITATION STYLE

APA

Knowles, K. E., McArthur, E. A., & Weiss, E. A. (2011). A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots. ACS Nano, 5(3), 2026–2035. https://doi.org/10.1021/nn2002689

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free