Nanoparticle/dye interface optimization in dye-sensitized solar cells

  • Bazzan G
  • Deneault J
  • Kang T
 et al. 
  • 30

    Readers

    Mendeley users who have this article in their library.
  • 0

    Citations

    Citations of this article.

Abstract

A critical component in the development of highly efficient dye-sensitized solar cells is the interface between the ruthenium bipyridyl complex dye and the surface of the mesoporous titanium dioxide film. In spite of many studies aimed at examining the detailed anchoring mechanism of the dye on the titania surface, there is as yet no commonly accepted understanding. Furthermore, it is generally believed that a single monolayer of strongly attached molecules is required in order to maximize the efficiency of electron injection into the semiconductor. In this study, the amount of adsorbed dye on the mesoporous film is maximised, which in turn increases the light absorption and decreases carrier recombination, resulting in improved device performance. A process that increases the surface concentration of the dye molecules adsorbed on the TiO2 surface by up to 20% is developed. This process is based on partial desorption of the dye after the initial adsorption, followed by readsorption. This desorption/adsorption cycling process can be repeated multiple times and yields a continual increase in dye uptake, up to a saturation limit. The effect on device performance is directly related and a 23% increase in power conversion efficiency is observed. Surface enhanced Raman spectroscopy, infrared spectroscopy, and electrochemical impedance analysis were used to elucidate the fundamental mechanisms behind this observation.

Author-supplied keywords

  • dye-sensitized
  • photovoltaic
  • ruthenium dye
  • solar cell
  • titania

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Giorgio Bazzan

  • James R. Deneault

  • Tae Sik Kang

  • Barney E. Taylor

  • Michael F. Durstock

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free