Neural network model for extracting optic flow

  • Tohyama K
  • Fukushima K
  • 9


    Mendeley users who have this article in their library.
  • 14


    Citations of this article.


When we travel in an environment, we have an optic flow on the retina. Neurons in the area MST of macaque monkeys are reported to have a very large receptive field and analyze optic flows on the retina. Many MST-cells respond selectively to rotation, expansion/contraction and planar motion of the optic flow. Many of them show position-invariant responses to optic flow, that is, their responses are maintained during the shift of the center of the optic flow. It has long been suggested mathematically that vector-field calculus is useful for analyzing optic flow field. Biologically, plausible neural network models based on this idea, however, have little been proposed so far. This paper, based on vector-field hypothesis, proposes a neural network model for extracting optic flows. Our model consists of hierarchically connected layers: retina, V1, MT and MST. V1-cells measure local velocity. There are two kinds of MT-cell: one is for extracting absolute velocities, the other for extracting relative velocities with their antagonistic inputs. Collecting signals from MT-cells, MST-cells respond selectively to various types of optic flows. We demonstrate through a computer simulation that this simple network is enough to explain a variety of results of neurophysiological experiments. © 2005 Elsevier Ltd. All rights reserved.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free