Nomograms for visualizing support vector machines

  • Jakulin A
  • Možina M
  • Demšar J
 et al. 
  • 39

    Readers

    Mendeley users who have this article in their library.
  • 40

    Citations

    Citations of this article.

Abstract

We propose a simple yet potentially very effective way of visualizing trained support vector machines. Nomograms are an established model visualization technique that can graphically encode the complete model on a single page. The dimensionality of the visualization does not depend on the number of attributes, but merely on the properties of the kernel. To represent the effect of each predictive feature on the log odds ratio scale as required for the nomograms, we employ logistic regression to convert the distance from the separating hyperplane into a probability. Case studies on selected data sets show that for a technique thought to be a black-box, nomograms can clearly expose its internal structure. By providing an easy-to-interpret visualization the analysts can gain insight and study the effects of predictive factors.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Aleks Jakulin

  • Martin Možina

  • Janez Demšar

  • Ivan Bratko

  • Blaž Zupan

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free