Skip to content
Journal article

Observational constraints on the global atmospheric budget of ethanol

Naik V, Fiore A, Horowitz L, Singh H, Wiedinmyer C, Guenther A, De Gouw J, Millet D, Goldan P, Kuster W, Goldstein A...(+11 more)

Atmospheric Chemistry and Physics, vol. 10, issue 12 (2010) pp. 5361-5370

  • 32

    Readers

    Mendeley users who have this article in their library.
  • 23

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC), as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors) are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr(-1) from industrial sources and biofuels, 9.2 Tg yr(-1) from terrestrial plants, similar to 0.5 Tg yr(-1) from biomass burning, and 0.05 Tg yr(-1) from atmospheric reactions of the ethyl peroxy radical (C(2)H(5)O(2)) with itself and with the methyl peroxy radical (CH(3)O(2)). The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH) is the primary global sink of ethanol in the model (65%), followed by dry deposition (25%), and wet deposition (10%). Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel.

Find this document

Get full text

Cite this document

Choose a citation style from the tabs below