Observed vegetation - Climate feedbacks in the United States

118Citations
Citations of this article
103Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Observed vegetation feedbacks on temperature and precipitation are assessed across the United States using satellite-based fraction of photosynthetically active radiation (FPAR) and monthly climate data for the period of 1982-2000. This study represents the first attempt to spatially quantify the observed local impact of vegetation on temperature and precipitation over the United States for all months and by season. Lead-lag correlations and feedback parameters are computed to determine the regions where vegetation substantially impacts the atmosphere and to quantify this forcing. Temperature imposes a significant instantaneous forcing on FPAR, while precipitation's impact on FPAR is greatest at one-month lead, particularly across the prairie. An increase in vegetation raises the surface air temperature by absorbing additional radiation and, in some cases, masking the high albedo of snow cover. Vegetation generally exhibits a positive forcing on temperature, strongest in spring and particularly across the northern states. The local impact of FPAR on precipitation appears to be spatially inhomogeneous and relatively weak, potentially due to the atmospheric transport of transpired water. The computed feedback parameters can be used to evaluate vegetation-climate interactions simulated by models with dynamic vegetation. © 2006 American Meteorological Society.

Cite

CITATION STYLE

APA

Notaro, M., Liu, Z., & Williams, J. W. (2006). Observed vegetation - Climate feedbacks in the United States. Journal of Climate, 19(5), 763–786. https://doi.org/10.1175/JCLI3657.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free