Optimization and experimental validation of a thermal cycle that maximizes entropy coefficient fisher identifiability for lithium iron phosphate cells

  • Mendoza S
  • Rothenberger M
  • Hake A
 et al. 
  • 17

    Readers

    Mendeley users who have this article in their library.
  • 3

    Citations

    Citations of this article.

Abstract

This article presents a framework for optimizing the thermal cycle to estimate a battery cell's entropy coefficient at 20% state of charge (SOC). Our goal is to maximize Fisher identifiability: a measure of the accuracy with which a parameter can be estimated. Existing protocols in the literature for estimating entropy coefficients demand excessive laboratory time. Identifiability optimization makes it possible to achieve comparable accuracy levels in a fraction of the time. This article demonstrates this result for a set of lithium iron phosphate (LFP) cells. We conduct a 24-h experiment to obtain benchmark measurements of their entropy coefficients. We optimize a thermal cycle to maximize parameter identifiability for these cells. This optimization proceeds with respect to the coefficients of a Fourier discretization of this thermal cycle. Finally, we compare the estimated parameters using (i) the benchmark test, (ii) the optimized protocol, and (iii) a 15-h test from the literature (by Forgez et al.). The results are encouraging for two reasons. First, they confirm the simulation-based prediction that the optimized experiment can produce accurate parameter estimates in 2 h, compared to 15-24. Second, the optimized experiment also estimates a thermal time constant representing the effects of thermal capacitance and convection heat transfer.

Author-supplied keywords

  • Entropy coefficient
  • Fisher identifiability
  • Open-circuit voltage
  • Thermal battery models

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free