Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks

103Citations
Citations of this article
252Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Human activities in coastal areas frequently cause loss of benthic macrophytes (e.g. seagrasses) and concomitant increases in microalgal production through eutrophication. Whether such changes translate into shifts in the composition of sediment detritus is largely unknown, yet such changes could impact the role these ecosystems play in sequestrating CO 2. We reconstructed the sedimentary records of cores taken from two sites within Botany Bay, Sydney - the site of European settlement of Australia - to look for human-induced changes in dominant sources of detritus in this estuary. Cores covered a period from the present day back to the middle Holocene (~6000 years) according to 210Pb profiles and radiocarbon ( 14C) dating. Depositional histories at both sites could not be characterized by a linear sedimentation rate; sedimentation rates in the last 30-50 years were considerably higher than during the rest of the Holocene. C : N ratios declined and began to exhibit a microalgal source signature from around the time of European settlement, which could be explained by increased nutrient flows into the Bay caused by anthropogenic activity. Analysis of stable isotopic ratios of 12C/ 13C showed that the relative contribution of seagrass and C 3 terrestrial plants (mangroves, saltmarsh) to detritus declined around the time of rapid industrial expansion (~1950s), coinciding with an increase in the contribution of microalgal sources. We conclude that the relative contribution of microalgae to detritus has increased within Botany Bay, and that this shift is the sign of increased industrialization and concomitant eutrophication. Given the lower carbon burial efficiencies of microalgae (~0.1%) relative to seagrasses and C 3 terrestrial plants (up to 10%), such changes represent a substantial weakening of the carbon sink potential of Botany Bay - this occurrence is likely to be common to human-impacted estuaries, and has consequences for the role these systems play in helping to mitigate climate change. © 2011 Blackwell Publishing Ltd.

Cite

CITATION STYLE

APA

Macreadie, P. I., Allen, K., Kelaher, B. P., Ralph, P. J., & Skilbeck, C. G. (2012). Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Global Change Biology, 18(3), 891–901. https://doi.org/10.1111/j.1365-2486.2011.02582.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free