Preparation and Characterisation of Highly Stable Iron Oxide Nanoparticles for Magnetic Resonance Imaging

28Citations
Citations of this article
92Readers
Mendeley users who have this article in their library.

Abstract

Magnetic nanoparticles produced using aqueous coprecipitation usually exhibit wide particle size distribution. Synthesis of small and uniform magnetic nanoparticles has been the subject of extensive research over recent years. Sufficiently small superparamagnetic iron oxide nanoparticles easily permeate tissues and may enhance the contrast in magnetic resonance imaging. Furthermore, their unique small size also allows them to migrate into cells and other body compartments. To better control their synthesis, a chemical coprecipitation protocol was carefully optimised regarding the influence of the injection rate of base and incubation times. The citrate-stabilised particles were produced with a narrow average size range below 2 nm and excellent stability. The stability of nanoparticles was monitored by long-term measurement of zeta potentials and relaxivity. Biocompatibility was tested on the Caki-2 cells with good tolerance. The application of nanoparticles for magnetic resonance imaging (MRI) was then evaluated. The relaxivities (r1,r2) and r2/r1 ratio calculated from MR images of prepared phantoms indicate the nanoparticles as a promising T2-contrast probe.

Cite

CITATION STYLE

APA

Kovář, D., Malá, A., Mlčochová, J., Kalina, M., Fohlerová, Z., Hlaváček, A., … Hubálek, J. (2017). Preparation and Characterisation of Highly Stable Iron Oxide Nanoparticles for Magnetic Resonance Imaging. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/7859289

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free