Protein aggregation in recombinant bacteria: Biological role of inclusion bodies

280Citations
Citations of this article
462Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Protein aggregation is an ordinary consequence of thermal stress. In recombinant bacteria, the over-expression of plasmid-encoded genes triggers transcription of heat-shock genes and other stress responses and often results in the aggregation of the encoded protein as inclusion bodies. The formation of these deposits represents a major obstacle for the production of biologically active polypeptides and restricts the spectrum of protein products being available for the industrial-biomedical market. Inclusion body formation was formerly considered to occur passively by the irretrievable deposition of partially-folded intermediates. Increasing evidence, however, indicates that protein aggregation in bacteria occurs as a reversible process deeply integrated in the cell mechanisms for coping with thermal stress, and that inclusion bodies are structurally dynamic structures. Inclusion body formation might actually be supported by the cellular machinery that when operated under specific stress conditions, transiently stores misfolded polypeptides until they could be further processed: either refolded or proteolysed. A better understanding of protein aggregation in cell physiology could allow not only inclusion body formation to be minimized more efficiently for a higher soluble yield, but also to comprehend in detail the intricacy of cell mechanisms committed to handling the misfolding danger.

Cite

CITATION STYLE

APA

Villaverde, A., & Carrió, M. M. (2003, September). Protein aggregation in recombinant bacteria: Biological role of inclusion bodies. Biotechnology Letters. https://doi.org/10.1023/A:1025024104862

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free