Radiation hydrodynamics including irradiation and adaptive mesh refinement with AZEuS. I. Methods

  • Ramsey J
  • Dullemond C
  • 22


    Mendeley users who have this article in their library.
  • 4


    Citations of this article.


Aims. The importance of radiation to the physical structure of protoplanetary disks cannot be understated. However, protoplanetary disks evolve with time, and so to understand disk evolution and by association, disk structure, one should solve the combined and time-dependent equations of radiation hydrodynamics. Methods. We implement a new implicit radiation solver in the AZEuS adaptive mesh refinement magnetohydrodynamics fluid code. Based on a hybrid approach that combines frequency-dependent ray-tracing for stellar irradiation with non-equilibrium flux limited diffusion, we solve the equations of radiation hydrodynamics while preserving the directionality of the stellar irradiation. The implementation permits simulations in Cartesian, cylindrical, and spherical coordinates, on both uniform and adaptive grids. Results. We present several hydrostatic and hydrodynamic radiation tests which validate our implementation on uniform and adaptive grids as appropriate, including benchmarks specifically designed for protoplanetary disks. Our results demonstrate that the combination of a hybrid radiation algorithm with AZEuS is an effective tool for radiation hydrodynamics studies, and produces results which are competitive with other astrophysical radiation hydrodynamics codes.

Author-supplied keywords

  • accretion
  • accretion disks - protoplanetary
  • disks - hydrodynamics -
  • methods
  • numerical - radiative transfer

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • J P Ramsey

  • C P Dullemond

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free