Real-time stereo visual SLAM in large-scale environments based on SIFT fingerprints

  • Schleicher D
  • Bergasa L
  • Barea R
 et al. 
  • 55

    Readers

    Mendeley users who have this article in their library.
  • 4

    Citations

    Citations of this article.

Abstract

This paper presents a new method for real-time SLAM calculation applied to autonomous robot navigation in large-scale environments without restrictions. It is exclusively based on the visual information provided by a cheap wide-angle stereo camera. Our approach divide the global map into local sub-maps identified by the so-called SIFT fingerprint. At the sub-map level (low level SLAM), 3D sequential mapping of natural land-marks and the robot location/orientation are obtained using a top-down Bayesian method to model the dynamic behavior. A high abstraction level to reduce the global accumulated drift, keeping real-time constraints, has been added (high level SLAM). This uses a correction method based on the SIFT fingerprints taking for each sub-map. A comparison of the low SLAM level using our method and SIFT features has been carried out. Some experimental results using a real large environment are presented.

Author-supplied keywords

  • Computer vision
  • Intelligent vehicles
  • SLAM

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free