Region grouping in natural foliage scenes: Image statistics and human performance

  • Ing A
  • 50

    Readers

    Mendeley users who have this article in their library.
  • 12

    Citations

    Citations of this article.

Abstract

This study investigated the mechanisms of grouping and segregation in natural scenes of close-up foliage, an important class of scenes for human and non-human primates. Close-up foliage images were collected with a digital camera calibrated to match the responses of human L, M, and S cones at each pixel. The images were used to construct a database of hand-segmented leaves and branches that correctly localizes the image region subtended by each object. We considered a task where a visual system is presented with two image patches and is asked to assign a category label (either same or different) depending on whether the patches appear to lie on the same surface or different surfaces. We estimated several approximately ideal classifiers for the task, each of which used a unique set of image properties. Of the image properties considered, we found that ideal classifiers rely primarily on the difference in average intensity and color between patches, and secondarily on the differences in the contrasts between patches. In psychophysical experiments, human performance mirrored the trends predicted by the ideal classifiers. In an initial phase without corrective feedback, human accuracy was slightly below ideal. After practice with feedback, human accuracy was approximately ideal.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

  • Almon D. Ing

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free