Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils

  • Biedermann F
  • Uzunova V
  • Scherman O
 et al. 
  • 114


    Mendeley users who have this article in their library.
  • 205


    Citations of this article.


Molecular dynamics simulations and isothermal titration calorimetry (ITC) experiments with neutral guests illustrate that the release of high-energy water from the cavity of cucurbit[n]uril (CBn) macrocycles is a major determinant for guest binding in aqueous solutions. The energy of the individual encapsulated water molecules decreases with increasing cavity size, because larger cavities allow for the formation of more stable H-bonded networks. Conversely, the total energy of internal water increases with the cavity size because the absolute number of water molecules increases. For CB7, which has emerged as an ultrahigh affinity binder, these counteracting effects result in a maximum energy gain through a complete removal of water molecules from the cavity. A new design criterion for aqueous synthetic receptors has therefore emerged, which is the optimization of the size of cavities and binding pockets with respect to the energy and number of residing water molecules.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Frank Biedermann

  • Vanya D. Uzunova

  • Oren A. Scherman

  • Werner M. Nau

  • Alfonso De Simone

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free