A Replication-inhibited unsegregated nucleoid at mid-cell blocks Z-ring formation and cell division independently of SOS and the SlmA nucleoid occlusion protein in Escherichia coli

30Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Chromosome replication and cell division of Escherichia coli are coordinated with growth such that wild-type cells divide once and only once after each replication cycle. To investigate the nature of this coordination, the effects of inhibiting replication on Z-ring formation and cell division were tested in both synchronized and exponentially growing cells with only one replicating chromosome. When replication elongation was blocked by hydroxyurea or nalidixic acid, arrested cells contained one partially replicated, compact nucleoid located mid-cell. Cell division was strongly inhibited at or before the level of Z-ring formation. DNA cross-linking by mitomycin C delayed segregation, and the accumulation of about two chromosome equivalents at mid-cell also blocked Z-ring formation and cell division. Z-ring inhibition occurred independently of SOS, SlmA-mediated nucleoid occlusion, and MinCDE proteins and did not result from a decreased FtsZ protein concentration. We propose that the presence of a compact, incompletely replicated nucleoid or unsegregated chromosome masses at the normal mid-cell division site inhibits Z-ring formation and that the SOS system, SlmA, and MinC are not required for this inhibition. © 2014, American Society for Microbiology. All Rights Reserved.

Cite

CITATION STYLE

APA

Cambridge, J., Blinkova, A., Magnan, D., Bates, D., & Walker, J. R. (2014). A Replication-inhibited unsegregated nucleoid at mid-cell blocks Z-ring formation and cell division independently of SOS and the SlmA nucleoid occlusion protein in Escherichia coli. Journal of Bacteriology, 196(1), 36–49. https://doi.org/10.1128/JB.01230-12

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free