Statistical parsing with probabilistic symbol-refined tree substitution grammars

  • Shindo H
  • Miyao Y
  • Fujino A
 et al. 
  • 75

    Readers

    Mendeley users who have this article in their library.
  • 2

    Citations

    Citations of this article.

Abstract

We propose Symbol-Refined Tree Substitution Grammars (SR-TSGs) for syntactic parsing. An SR-TSG is an extension of the conventional TSG model where each nonterminal symbol can be refined (subcategorized) to fit the training data. We aim to provide a unified model where TSG rules and symbol refinement are learned from training data in a fully automatic and consistent fashion. We present a novel probabilistic SR-TSG model based on the hierarchical Pitman-Yor Process to encode backoff smoothing from a fine-grained SR-TSG to simpler CFG rules, and develop an efficient training method based on Markov Chain Monte Carlo (MCMC) sampling. Our SR-TSG parser achieves an F1 score of 92.4% in the Wall Street Journal (WSJ) English Penn Treebank parsing task, which is a 7.7 point improvement over a conventional Bayesian TSG parser, and better than state-of-the-art discriminative reranking parsers.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free