Stochastic model based approach for biometric identification

N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this paper, we present a new stochastic model based approach for enhanced image segmentation in biometric identification systems. Biometric features such as fingerprint, face, iris, hand geometry and more recently dental features are being used for human identification. Image analysis of each of these biometric features has various challenges to overcome. To address such contemporary problems of image segmentation, we provide a novel approach based on maximum a posteriori (MAP) fitting Gaussian mixture model using Expectation-Minimization (EM) algorithm within the Bayesian framework. Our new algorithm captures the pixel intensity by the likelihood term in Bayesian Networks, and a priori biasing term of the spatial location information with the help of Markov Random Fields (MRF) model. We have employed a novel approach of using Daubechies wavelet transform for texture feature extraction that uses MRF model and a robust technique of determining the number of pixel classes based on Cluster Ensembles for a reliable segmentation of dental X-ray images. We present how our approach could be applied in dental biometrics to achieve very fast and reliable human identification. Experiments show that our new unsupervised image segmentation technique provides accurate feature extraction and teeth segmentation for effective biometric identification. © Springer Science+Business Media B.V. 2010.

Cite

CITATION STYLE

APA

Islam, M., Venkataraman, S., & Alazab, M. (2010). Stochastic model based approach for biometric identification. In Technological Developments in Networking, Education and Automation (pp. 303–308). Kluwer Academic Publishers. https://doi.org/10.1007/978-90-481-9151-2_53

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free