Structurally tailored organic-inorganic perovskites: Optical properties and solution-processed channel materials for thin-film transistors

  • Mitzi D
  • Dimitrakopoulos C
  • Kosbar L
  • 209

    Readers

    Mendeley users who have this article in their library.
  • 168

    Citations

    Citations of this article.

Abstract

The structures, optical properties, and field-effect mobilities of three semiconducting m-fluorophenethylammonium-based (C6H4FC2H4NH3)(2)SnI4 perovskites (m = 2, 3, or 4) are reported and compared with the analogous measurements for the nonfluorosubstituted phenethylammonium system, (C6H5C2H4NH3)(2)SnI4. The (4-fluorophenethylammonium)(2)SnI4 system adopts a fully ordered monoclinic (P2(1)/c) cell with the lattice parameters a = 16.653(2) Angstrom, b = 8.6049(8) Angstrom, c = 8.7551(8) Angstrom, beta = 98.644(2)degrees, and Z = 2. Both (3-fluorophenethylammonium)(2)SnI4 and (2-fluorophenethylammonium)(2)SnI4 are refined in a monoclinic C2/c subcell with the lattice parameters a = 34.593(4) Angstrom, b = 6.0990(8) Angstrom, c = 12.254(2) Angstrom, beta = 103.917(2)degrees, and Z = 4 and a = 35.070(3) Angstrom, b = 6.1165(5) Angstrom, c = 12.280(1) Angstrom,beta = 108.175(1)degrees, and Z = 4, respectively. Each hybrid structure consists of sheets of corner-sharing distorted SnI6 octahedra separated by bilayers of fluorophenethylammonium cations. The dominant low energy feature in the optical absorption spectra for spin-coated films of the new hybrids (an exciton band associated with the tin(II) iodide framework) shifts from 609 to 599 nm and 588 nm across the series m = 4 to 2 (the corresponding value for the phenethylammonium-based system is 609 nm). This shift in optical properties is primarily attributed to subtle structural modifications induced by the organic cation substitutions, including a progressive shift in Sn-I-Sn tilt angle between adjacent SnI6 octahedra from 156.375(8)degrees for the m = 4 structure to 154.16(3)degrees and 153.28(3)degrees (average) for the m = 3 and 2 structures, respectively. The corresponding angle in the previously reported phenethylammonium-based structure is 156.48 degrees (average), very similar to the M = 4 value. Other potentially important structural modifications include the average Sn-I bond length and the degree of interaction between the substituted fluorine and the inorganic sheet. Saturation regime field-effect mobilities for thin-film field-effect transistors based on the new fluorophenethylammonium-based hybrids are similar to that previously observed in (phenethylammonium)(2)SnI4, typically ranging from similar to0.2 to 0.6 cm(2) V-1 s(-1), with the maximum currents in the devices decreasing across the series m = 4 to 2. The differences in transport properties can be attributed to the change in electronic structure, as well as to film morphology modification, brought about by the organic cation substitutions.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • D. B. Mitzi

  • C. D. Dimitrakopoulos

  • L. L. Kosbar

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free