Structure and energetics of the vacancy in graphite

  • El-Barbary A
  • Telling H
  • Ewels P
 et al. 
  • 181


    Mendeley users who have this article in their library.
  • 349


    Citations of this article.


We determine properties of the vacancy in graphite from first principles calculations. The ground-state structure is associated with a formation energy of 7.4 eV and arises through a combination of symmetric relaxation and symmetry-breaking Jahn-Teller distortion to one of three degenerate, symmetry-related structures. The distortion results in a weak reconstructed bond and small out-of-plane atomic displacements. Dynamic switching between degenerate structures is activated by a barrier of 0.1 eV and we interpret scanning tunneling microscopy observations on the basis of thermal averaging between structures. The calculated migration energy of 1.7 eV is lower than that widely accepted from experiment, and we propose that the discrepancy is explained by a revised picture of trapping during vacancy transport, dependent on concentration. We discuss the significance of these findings in understanding defect behavior in irradiated graphite and related graphitic materials, in particular single-walled nanotubes.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free