Structured mRNAs Regulate Translation Initiation by Binding to the Platform of the Ribosome

115Citations
Citations of this article
194Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Gene expression can be regulated at the level of initiation of protein biosynthesis via structural elements present at the 5′ untranslated region of mRNAs. These folded mRNA segments may bind to the ribosome, thus blocking translation until the mRNA unfolds. Here, we report a series of cryo-electron microscopy snapshots of ribosomal complexes directly visualizing either the mRNA structure blocked by repressor protein S15 or the unfolded, active mRNA. In the stalled state, the folded mRNA prevents the start codon from reaching the peptidyl-tRNA (P) site inside the ribosome. Upon repressor release, the mRNA unfolds and moves into the mRNA channel allowing translation initiation. A comparative structure and sequence analysis suggests the existence of a universal stand-by site on the ribosome (the 30S platform) dedicated for binding regulatory 5′ mRNA elements. Different types of mRNA structures may be accommodated during translation preinitiation and regulate gene expression by transiently stalling the ribosome. © 2007 Elsevier Inc. All rights reserved.

Author supplied keywords

Cite

CITATION STYLE

APA

Marzi, S., Myasnikov, A. G., Serganov, A., Ehresmann, C., Romby, P., Yusupov, M., & Klaholz, B. P. (2007). Structured mRNAs Regulate Translation Initiation by Binding to the Platform of the Ribosome. Cell, 130(6), 1019–1031. https://doi.org/10.1016/j.cell.2007.07.008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free