Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis

  • Jedrzejas M
  • Stern R
  • 35

    Readers

    Mendeley users who have this article in their library.
  • 47

    Citations

    Citations of this article.

Abstract

Human hyaluronidases (Hyals) are a group of five endo-beta-acetyl-hexosaminidase enzymes, Hyal-1, -2, -3, -4, and PH-20, which degrade hyaluronan using a hydrolytic mechanism of action. Catalysis by these Hyals has been shown to follow a double-displacement scheme. This involves a single Glu residue within the enzyme, the only catalytic residue, as the proton donor (acid). Also involved is a carbonyl group of the hyaluronan (HA) N-acetyl-D-glucosamine as a unique type of nucleophile. Thus the substrate participates in the mechanism of action of its own catalysis. An oxocarbonium ion transition state is postulated, but there is no formation of a covalent enzyme-glycan intermediate, as found in most such reactions. The major domain is catalytic and has a distorted (beta/alpha)8 triose phosphate isomerase (TIM) barrel fold. The C-terminal domain is separated by a peptide linker. Each Hyal has a different C-terminal sequence and structure, the function of which is unknown. These unique C-termini may participate in the additional function(s) associated with these multifunctional enzymes.

Author-supplied keywords

  • Chondroitin
  • Hyaluronan
  • Hyaluronidase
  • Mechanism of action
  • Modeling
  • Structure/function

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free