Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted Magnetic resonance imaging

  • Amstad E
  • Zurcher S
  • Mashaghi A
 et al. 
  • 70

    Readers

    Mendeley users who have this article in their library.
  • 155

    Citations

    Citations of this article.

Abstract

Magnetic resonance imaging (MRI), a non-invasive, non-radiative technique, is thought to lead to cellular or even molecular resolution if optimized targeted MR contrast agents are introduced. This would allow diagnosing progressive diseases in early stages. Here, it is shown that the high binding affinity of poly(ethylene glycol)-gallol (PEG-gallol) allows freeze drying and re-dispersion of 9 +/- 2-nm iron oxide cores individually stabilized with approximately 9-nm-thick stealth coatings, yielding particle stability for at least 20 months. Particle size, stability, and magnetic properties of PEGylated particles are compared to Feridex, a commercially available untargeted negative MR contrast agent. Biotin-PEG(3400)-gallol/methoxy-PEG(550)-gallol stabilized nanoparticles are further functionalized with biotinylated human anti-VCAM-1 antibodies using the biotin-neutravidin linkage. Binding kinetics and excellent specificity of these nanoparticles are demonstrated using quartz crystal microbalance with dissipation monitoring (QCM-D). These MR contrast agents can be functionalized with any biotinylated ligand at controlled ligand surface density, rendering them a versatile research tool.

Author-supplied keywords

  • Contrast agents
  • Functionalization
  • MRI
  • Stabilization
  • Targeting

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free