A surface micromachined electrostatic ultrasonic air transducer

  • Haller M
  • Khuri-Yakub B
  • 96


    Mendeley users who have this article in their library.
  • 220


    Citations of this article.


Airborne ultrasound has many applications such as, ranging, nondestructive evaluation, gas flow measurement, and acoustic microscopy. This paper investigates the generation and detection of ultrasound in air at a few MHz. Conventional plane piston lead zirconium titanate (PZT) based transducers perform poorly for this application due to the lack of proper matching layer materials. Electrostatic, or capacitive, transducers promise higher efficiency and broader bandwidth performance. The device structure in this work consists of a capacitor where one plate is a circular silicon nitride membrane coated with gold and the other is a rigid silicon substrate. By applying a voltage between the membrane and the silicon substrate, an electrostatic force is exerted on the membrane which sets it in motion, thus generating a sound wave in air. Presented here is an electrical equivalent circuit model for electrostatic transducers which is based on the early work of Mason (1942). The electrostatic transducers were designed and constructed for operation at 1.8 and 4.6 MHz. The transducers were fabricated using standard micromachining techniques. An optical interferometer was used to measure the peak displacement of the 1.8 MHz electrostatic transducer at 230 /spl Aring//V. A transmit-receive system was built using two electrostatic transducers. The system had a signal to noise ratio of 34 dB at a transducer separation of 1 cm. Each transducer had a 3-dB bandwidth of 20%, and a one-way insertion loss of 26 dB. There is excellent agreement between the measured device performance and theoretical predictions.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free