Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles

290Citations
Citations of this article
105Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Superparamagnetic nanoparticles have a number of important biomedical applications, serving as MR contrast agents for imaging specific molecular targets, as reagents for cell labeling and cell tracking, and for the isolation of specific classes of cells. We have determined the physical and biological properties of MION-47 and amino-CLIO, nanoparticles which serve as precursors for the synthesis of targeted MR contrast agents, and Tat-CLIO, a nanoparticle used as a cell labeling reagent. Blood half-lives for MION-47 and amino-CLIO were 682 ± 34 and 655 ± 37 min, respectively. The attachment of 9.7 tat peptides per crystal to amino-CLIO resulted in a reduction in blood half-life to 47 ± 6 min. MION-47, amino-CLIO, and Tat-CLIO were present in highest concentrations in liver and spleen and lymph nodes, where concentrations for all three nanoparticles ranged from 8.80 to 6.11% of injected dose per gram. Twenty-four hours after the intravenous injection of amino-CLIO, the nanoparticle was concentrated in cells surrounding hepatic blood vessels (endothelial and Kupffer cells), in a fashion similar to that obtained with other nanoparticle preparations. In contrast, Tat-CLIO was present as numerous discrete foci of intense fluorescence throughout the parenchyma. Using the peptide as a component of future nanoparticles, it might be possible to design sensors for the detection of macromolecules present in intracellular compartments.

Cite

CITATION STYLE

APA

Wunderbaldinger, P., Josephson, L., & Weissleder, R. (2002). Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjugate Chemistry, 13(2), 264–268. https://doi.org/10.1021/bc015563u

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free