Theoretical calculation of the phase behavior of colloidal membranes

8Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We formulate a density functional theory that describes the phase behavior of hard rods and depleting polymers, as realized in recent experiments on suspensions of fd virus and nonadsorbing polymer. The theory predicts the relative stability of nematic droplets, stacked smectic columns, and a recently discovered phase of isolated monolayers of rods, or colloidal membranes. We find that a minimum rod aspect ratio is required for stability of colloidal membranes and that collective protrusion undulations are the dominant effect that stabilizes this phase. The theoretical predictions are shown to be qualitatively consistent with experimental and computational results. © 2011 American Physical Society.

Cite

CITATION STYLE

APA

Yang, Y., & Hagan, M. F. (2011). Theoretical calculation of the phase behavior of colloidal membranes. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 84(5). https://doi.org/10.1103/PhysRevE.84.051402

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free