Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack

  • Enomoto Y
  • Orihara K
  • Takamasu T
 et al. 
  • 34


    Mendeley users who have this article in their library.
  • 68


    Citations of this article.


Background: Epidermal growth factor receptor ligands, such as epidermal growth factor (EGF) and amphiregulin, may play key roles in tissue remodeling in asthma. However, the kinetics of EGF and amphiregulin secretion in the airway after an acute asthma attack and the effect of prolonged airway exposure to these ligands on airway remodeling are unknown. Objective: To measure the EGF and amphiregulin concentrations in sputa obtained from patients with asthma under various conditions, and to examine the effects of EGF and amphiregulin on the proliferation or differentiation of airway structural cells. Methods: Epidermal growth factor and amphiregulin levels were measured by ELISA in sputum specimens collected from 14 hospitalized children with asthma during an acute asthma attack, 13 stable outpatients with asthma, 8 healthy control children, and 7 children with respiratory tract infections. The effects of EGF and amphiregulin on the proliferation and/or differentiation of normal human bronchial epithelial cells (NHBE), bronchial smooth muscle cells (BSMC), and normal human lung fibroblasts (NHLF) were examined. Results: The sputum levels of EGF were significantly higher for about a week after an acute asthma attack compared with the levels in stable subjects with asthma and control subjects. In contrast, upregulation of amphiregulin in the sputa of patients with asthma was observed only during the acute attack. EGF caused proliferation of NHBE, BSMC, and NHLF, whereas amphiregulin induced proliferation of only NHBE. Prolonged exposure of NHBE to EGF and amphiregulin induced mucous cell metaplasia in an IL-13-independent manner. Conclusion: Acute asthma attacks are associated with hypersecretion of EGF and amphiregulin in the airway. Recurrent acute attacks may aggravate airway remodeling. © 2009 American Academy of Allergy, Asthma & Immunology.

Author-supplied keywords

  • Amphiregulin
  • bronchial asthma
  • bronchial epithelial cells
  • epidermal growth factor
  • tissue remodeling

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free