Uncertainty analysis of statistically downscaled temperature and precipitation regimes in Northern Canada

  • Dibike Y
  • Gachon P
  • St-Hilaire A
 et al. 
  • 72


    Mendeley users who have this article in their library.
  • 64


    Citations of this article.


Uncertainty analysis is used to make a quantitative evaluation of the reliability of statistically downscaled climate data representing local climate conditions in the northern coastlines of Canada. In this region, most global climate models (GCMs) have inherent weaknesses to adequately simulate the climate regime due to difficulty in resolving strong land/sea discontinuities or heterogeneous land cover. The performance of the multiple regression-based statistical downscaling model in reproducing the observed daily minimum/maximum temperature, and precipitation for a reference period (1961-1990) is evaluated using climate predictors derived from NCEP reanalysis data and those simulated by two coupled GCMs (the Canadian CGCM2 and the British HadCM3). The Wilcoxon Signed Rank test and bootstrap confidence-interval estimation techniques are used to perform uncertainty analysis on the downscaled meteorological variables. The results show that the NCEP-driven downscaling results mostly reproduced the mean and variability of the observed climate very well. Temperatures are satisfactorily downscaled from HadCM3 predictors while some of the temperatures downscaled from CGCM2 predictors are statistically significantly different from the observed. The uncertainty in precipitation downscaled with CGCM2 predictors is comparable to the ones downscaled from HadCM3. In general, all downscaling results reveal that the regression-based statistical downscaling method driven by accurate GCM predictors is able to reproduce the climate regime over these highly heterogeneous coastline areas of northern Canada. The study also shows the applicability of uncertainty analysis techniques in evaluating the reliability of the downscaled data for climate scenarios development.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free