Skip to content
Journal article

A unified approach to infrared aerosol remote sensing and type specification

Clarisse L, Coheur P, Prata F, Hadji-Lazaro J, Hurtmans D, Clerbaux C...(+6 more)

Atmospheric Chemistry and Physics, vol. 13, issue 4 (2013) pp. 2195-2221

  • 32

    Readers

    Mendeley users who have this article in their library.
  • 44

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

Atmospheric aerosols impact air quality and global climate. Space based measurements are the best way to observe their spatial and temporal distributions, and can also be used to gain better understanding of their chemical, physical and optical properties. Aerosol composition is the key parameter affecting the refractive index, which determines how much radiation is scattered and absorbed. Composition of aerosols is unfortunately not measured by state of the art satellite remote sounders. Here we use high resolution infrared measurements for aerosol type differentiation, exploiting, in that part of spectrum, the dependency of their refractive index on wavelength. We review existing detection methods and present a unified detection method based on linear discrimination analysis. We demonstrate this method on measurements of the Infrared Atmospheric Sounding Interferometer (IASI) and five different aerosol types, namely volcanic ash, windblown sand, sulfuric acid droplets, ammonium sulfate and smoke particles. We compare these with traditional MODIS AOD measurements. The detection of the last three types is unprecedented in the infrared in nadir mode, but is very promising, especially for sulfuric acid droplets which are detected in the lower troposphere and up to 6 months after injection in the upper troposphere/lower stratosphere.

Find this document

Get full text

Cite this document

Choose a citation style from the tabs below