Very low resolution face recognition problem

  • Zou W
  • Yuen P
  • 102

    Readers

    Mendeley users who have this article in their library.
  • 118

    Citations

    Citations of this article.

Abstract

This paper addresses the very low resolution (VLR) problem in face recognition in which the resolution of face image to be recognized is lower than 16×16. The VLR problem happens in many surveillance camera-based applications and existing face recognition algorithms are not able to give satisfactory performance on VLR face image. While face super-resolution (SR) methods can be employed to enhance the resolution of the images, the existing learning-based face SR methods do not perform well on such a very low resolution face image. To overcome this problem, this paper models the SR problem under VLR case as a regression problem with two constraints. First, a new data constraint is design to perform the error measurement on high resolution image space which provides more detailed and discriminative information. Second, discriminative constraint is proposed and incorporated in the training stage so that the reconstructed HR image has higher discriminability. CMU-PIE, FRGC and surveillant camera face (SCface) databases are selected for experiments. Experimental results show that the proposed method outperforms the existing methods, in terms of image quality and recognition accuracy.

Author-supplied keywords

  • Face recognition
  • face super-resolution (SR)
  • relationship learning
  • very low resolution (VLR)

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free